Variables, References
and Mutation

Aka, By Far the Hardest Topic from CSE8A, and 8B, and 11!

What is printed?

def silly(a, b):

a=>b+ 1
b = a//2
>>> a = 67
>>> b = 13
>>> silly(b,a)
>>> print(a,b)
A. 67,13
B. 68, 34
C. 14,7
D. 8,7
E. Something else

testO1

What is printed?

def silly(a, b):

>>> a
>>> b = 13
>>> silly(b,a)

I 1
o
\l

67, 13

68, 34

14,7

8,7
Something else

moono>

When you open a picture ...

>>> pic = Image.open(“homer.jpg’)

>

IC
homer.jpg P
A file on your computer A Python Picture Object

PIUs representation

On your computer’s hard drive ,
In your computer’s memory

def modify(im):
for x 1In range(im.size[0]):
im.putpixel((x,0), (0,0,0))
return Im

>>> picC
>>> picC

Image.open(“homer.jpg?)
modify(pic)

Passing parameters to functions

def modify(im):
for x 1In range(im.size[0]):
im.putpixel((x,0), (0,0,0))
return Im

>>> picC
>>> picC

Image.open(“homer.jpg?)
modify(pic)

picC

def modify(im):
for x 1In range(im.size[0]):
im.putpixel((x,0), (0,0,0))
return Im

>>> pic = Image.open(“homer._jpg~)
>>> pic2 = modify(pic)

of modify(im):

or X In range(im.size[0]):

an . putpixel((x,0), (0,0,0))
im

ret

>>> pic = Image@en(“homer.jpg”’
>>> pic2 = modify(®

picC
THIS IS NOT HOW IT IS DONE

When you open a picture ...

>>> pic = Image.open(“homer.jpg’)

>
pic 7/

homer.jpg
A file on your computer A Python Picture Object

PIUs representation

On your computer’s hard drive ,
In your computer’s memory

Objects in Python

The value of an object variable* in
Python (i.e., the arrow in the diagram)
is a number that represents the
location of that object in your
computer’s memory. The variable
stores a reference to the object in
memory.

picC

A Python Picture Object

* The fine print: technically ALL data in Python is an object, so all
variables are object variables, but we will only talk about references
when we talk about mutable objects. More on this shortly...

PILs representation
In your computer’s memory

Objects in Python

The value of an object variable* in
Python (i.e., the arrow in the diagram)
is a number that represents the
location of that object in your
computer’s memory. The variable
stores a reference to the object in
memory.

NOTE: This location is NOT on pic 42428428
the stack. Itisin a different ' _
part of memory called the A Python Picture Object

heap.

PILs representation
In your computer’s memory

>>> pic = Image.open(“homer.jpg”)
>>> pic2 = Image.open(“homer.jpg’) 2 picture objects!

pic 7/

homer.jpg
A file on your computer

On your computer’s hard drive
pic2

>>> pic = Image.open(“homer.jpg”)
>>> pic2 = Image.open(“homer.jpg’) 2 picture objects!

pic [42428428

homer.jpg
A file on your computer

On your computer’s hard drive

pic2{30859432

>>> pic = Image.open(”flower._jpg’)

>>> pic2 = picC

homer.jpg
A file on your computer

On your computer’s hard drive

picC

42428428

pic2

1 picture object!

42428428

>>> pic = Image.open(”flower._jpg’)

>>> piCZ = piC 1 picture object!

picC
pic2| /
Note, these
. arrows point to
| homer.jpg the whole
A file on your computer object. It’s not
important
On your computer’s hard drive where exactly

we draw them.

Reassignment

>>> pic = Image.open(“homer.jpg”)
>>> pic2 = Image.open(“bender._jpg”)

picC

Reassignment

>>> pic = Image.open(“homer.jpg”)
>>> pic2 = Image.open(“bender._jpg”)
>>> plIc = pic2

pic2| N piC

We can reassign the value of the variable, which results in it
referencing something else in memory.

Objects are Mutable Datal

>>> pic = Image.open(“homer.jpg”)

pic %

Via this reference we can change the value of the OBJECT. This is
DIFFERENT FROM reassigning the value of the variable ...

Objects are Mutable Datal

>>> pic = Image.open(“homer.jpg”’)
>>> pic.putpixel((3,4), (0,0,0))

This is only possible because
objects are MUTABLE

picC

Via this reference we can change the value of the OBJECT. This is

e

DIFFERENT FROM reassigning the value of the variable ...

Mutable data

Changeable types:
list
Image

(actually any user-
defined object, but
more on that In
8A/11)

>[1, 2, 3, 4]

Immutable data

Unchangeable types:

string float
int bool

tuple
range

> 9

>(1, 2, 3, 4)

> range(7)

Reassignment vs. Data Mutation

This is likely the most difficult topic you
will learn in CSESA/8B/11.
Mastering this topic is the key to acing
vour first year of CS!

Reassignment vs. Data Mutation

>>> myL = [1, 2, 3, 4] >>> myT = (1, 2, 3, 4)

myL >[1, 2, 3, 4]}

myT >(1, 2, 3, 4)

Reassignment vs. Data Mutation

>>> myL = [1, 2, 3, 4] >>> myT = (1, 2, 3, 4)
>>> myL = [10, 11, 12] >>> myT = (10, 11, 12)
myL >[1, 21 37 4]

myT >(1, 2, 3, 4)

Reassignment vs. Data Mutation

>>> myL
>>> myL

[1, 2, 3, 4] >>> myT
[10, 11, 12] >>> myT

1, 2, 3, 4)
(10, 11, 12)

Just like any assignment, myL and myT are REASSIGNED to a
new value (i.e., a new location in memory)

[1, 2, 3, 4]

[10, 11, 12]

myT \\\i\\\s(1, 2, 3, 4)

(10, 11, 12)

Reassignment vs. Data Mutation

>>> myL = [1, 2, 3, 4] >>> myT = (1, 2, 3, 4)

myL >[1, 2, 3, 4]}

myT >(1, 2, 3, 4)

Reassignment vs. Data Mutation

>>> myL = [1, 2, 3, 4] >>> myT = (1, 2, 3, 4)
>>> myL[3] = 9 >>> myT[3] = 9
myL >[1, 2, 3, 4]

myT >(1, 2, 3, 4)

Reassignment vs. Data Mutation

>>> myL = [1, 2, 3, 4] >>> myT = (1, 2, 3, 4)
>>> myL[3] = 9 >>> myT[3] = 9
Indexing MUTATES the list. Tuples are IMMUTABLE.

This statement will result in
an error.

myL >[1, 2, 3, 9]

myT >(1, 2, 3, 4) ERrRrOR

Immutable data

>>> myT
>>> myT

myT

myT

(1, 2, 3, 4)
(10, 11, 12)

For immutable data, the fact that the variable stores a
reference rather than the value itself is mostly irrelevant

(1, 2, 3, 4)

=

myT

\K(l’ 2, 3, 4)
(10, 11, 12)

(10, 11, 12)

Immutable data

>>> X =
>>> X =

NG

For immutable data, the fact that the variable stores a
reference rather than the value itself is mostly irrelevant

X 1 — X 4

X 1 THIS IS NOT THE CASE FOR MUTABLE
DATA, WHERE MUTATION AND
REASSIGNMENT ARE IMPORTANT

Mutable data

Changeable types:
list
Image

(actually any user-
defined object, but
more on that In
8A/11)

>[1, 2, 3, 4]

Immutable data

Unchangeable types:

string float
int bool

tuple
range

> 9

>(1, 2, 3, 4)

> range(7)

Reassignment vs. Data Mutation

mi [——> [1, 2,3, 4]

myL2

>>> myL = [1, 2, 3, 4] W

>>> myL2 = myL A

>>> myL[1] = 5

>>> print(myL2[1]) 2'
D
E

test02

Reassignment vs. Data Mutation

mi [——> [1, 2,3, 4]

myL2

>>> myL = [1, 2, 3, 4] What does this print?
>>> myL2 = myL

>>> myL = [5, 6, 7] A
>>> myL[1] = 8 B
>>> print(myL2[1]) C.
D
E

test03

Reassignment vs. Data Mutation

mi [——> [1, 2,3, 4]

myL2

>>> myL = [1, 2, 3, 4] What does this print?
>>> myL2 = [2, 5, 2]

>>> myL[1] = 8 A
>>> myL2 = myL £
>>> myL = [5, 6, 7] C.
>>> print(myL2[1]) D

E

testO4

_Swapping variable values

>>> X = 5 y
>>> y = 10
>>> X =y
>>> y = X
>>> print(x, y) y

What does this print?
A.5 10

B.105

C.5 5

D. 10 10

E. Something else

test05

_Swapping variable values

>>> x = 5

>>> y = 10

>>> temp = X

>>> X =y

>>> y = temp y
>>> print(x, y)

i1
X

temp
What does this print?
A.5 10
B.105
C.5 5
D. 10 10
E. Something else

test06

_Functions and (immutable) Variables

def swap(a, b):

temp = a
a=>
b = temp

>>> X = 5
>>> y = 10
>>> swap(X, Y)
>>> print(x, Yy)

What does this print?
A. 510
B. 105
C
D

. 1010
E. Something else

testO07

_Functions and (immutable) Variables

def swap(a, b):

temp = a
a=>b
b = temp X
>>> X = 5
>>> y = 10 y
>>> swap(X, Y)
>>> print(x, y) Swap stack frame
a
What does this print?
A. 510 b
B. 105
C.55
D. 1010 temp
E. Something else

testO07

‘Functions and Mutable Types

def swap(L2, 11, 12):
temp = L2[11]
L2[11] L2[12]
L2[12] temp

>>> myL = [2, 3, 4, 1]
>>> swap(myL, O, 3)
>>> print(myL)

What does this print?
A. [2,3,4,1]

B. [1, 2,3, 4]

C. [1,3,4,2]

D. [1, 2, 4, 3]

E. Something else

test08

‘Functions and Mutable Types

def swap(L2, 11, 12):
temp = L2[11]
L2[11] L2[12]
L2[12] temp

>>> myL = [2, 3, 4, 1]
>>> swap(myL, O, 3)
>>> print(myL)

What does this print?
A. [2,3,4,1]

B. [1, 2,3, 4]

C. [1,3,4,2]

D. [1, 2, 4, 3]

E. Something else

test08

2, 3, 4, 1
MyL //[\
L2
i1
i2
temp

Swap stack frame

The conclusion

You can change the contents of lists
(and pictures!) in functions that take
those lists as input.

(actually, lists or any mutable objects)

Those changes will be visible everywhere.

(immutable objects are safe, however)

The conclusion

Mutable data

def swap(L2, 11, 12):
temp = L2[11]
L2[11] L2[12]
L2[12] temp

>>> myL = [2, 3, 4, 1]
>>> swap(myL, 0, 3)
>>> print(myL)

Immutable data

def swap(a, b):

temp = a
a=m>
b = temp

return (a,b)

S
10

>>> X
>>>

>>> print(x, y)

y
>>> (X,y) = swap(X, Y)

test09

